Friday, January 9, 2009

research problem

A Sierpinski Triangle is designed using equilateral triangles. The process involves removing smaller triangles from larger ones by joining the midpoints of the sides of the larger triangles.<-- STAGE 1

More triangles will be removed up to the nth stage. Find a pattern in the total number of the triangles removed.
STAGE NO ( y ) --------------------NO OF TRIANGLES REMOVED ( T )
1 ----------------------------------------------------------.1
2 ----------------------------------------------------------.4
3 ---------------------------------------------------------.13
4 ---------------- ----------------------------------------.40
5 -------------------------------------------------------..-121
6 --------------------------------------------------------.-364
7 ----------------------------------------------------------1093
8 ----------------------------------------------------------3280
9 ----------------------------------------------------------9841
10 --------------------------------------------------------29524
Formula
---- T = n + 3 ( x )
--------where n = 1
----------------..y = stage number
----------------..x = no. of triangles removed preceeding y
----------------..T = no. of triangles removed
Example:
---- stage 1: T = n + 3( x )
----------------= 1 + 3 ( 0 )
----------------= 1
---- stage 2: T = n + 3( x )
----------------= 1 + 3 ( 1 )
----------------= 1 + 3
----------------= 4
---- stage 10: T = n + 3( x )
----------------= 1 + 3 ( 9841 )
----------------= 1 + 29523
----------------= 29524

1 comment:

MR. EMMOJICA2008 said...

very good research proble ha. okay continue to work on this project nad i will track your improvement. by the way next time post your rrl and the background of your study